Importance of Accurate Specification Conversions

- Many technical data packages (TDPs) need updating to convert canceled or obsolete specifications to current specifications
- Contracts are often unnecessarily delayed by as much as one year due to inaccurate specifications
- Suppliers no longer support old specs
- Conversion to modern specs is difficult

Ensure These Designations are Updated

• Alloy Number

– Commercial alloy designations can change

- Casting Inspection Class and Radiographic Grade

 Critical for determining nondestructive testing (NDT) requirements for inspection frequency and radiographic soundness
- Mechanical Properties Class

 Determines mechanical property and test coupon requirements

Verify Alloy Designation

AMERICAN METALCASTING CONSORTILI.

Cast aluminum example:

- Commercial designation was 220
- Current Aluminum Association designation is 520

Reference: <u>https://www.faa.gov/aircraft/air_cert/</u> <u>design_approvals/csta/publications/m</u> <u>edia/formerdesignations.pdf</u>

	Former Designations			Current
	commercial	ASTM-ASME	SAE (1)	Designation
	108	CS43A		208.0
	A108	CS64A	330	308.0
	C113	CS74A	33	213,0
	122	CG100A	34	222.0
	142	CN42A	39	242,0
	195	C4A	38	295,0
	295.0, <u>B195</u> 14	CS4ZA	380	296.0
	319	SC64C, D	329, 320	319.0
	Alicast **			309.0
	Red X-8	SC82A	327	328.0
	F332.0, F132 (**	SC103A	332	332.0
	333	014004	333,0	226.0
	A332.0, A132 **	SN122A	321	336.0
	354	00514		354,0
	305	SUDIA	322	355.0
	0355	SC51B	300	0355,0
	306	SG/UA	323	356.0
	A350	56/08	330	A356,0
	35/			357.0
	A35/	80044		A35/10
	359	SG91A	200	359.0
	360	SG100B	309	360,0
	A360	SGIUDA		A360.0
	360	5084B	200	380,0
	A360	5084A	300	A380.0
	204	SCIUZA		383,0
	384	50114A		384.0 , A384.0
	A300			A200.0
	43	912B		A390.0
	A13	S120	305	413.0
	A13	958	305	443.0
	43	300		A443.0
$\mathbf{\mathbf{N}}$	43	854		B443.0
N		550		C443.0
	B514 0 B214 (8)	GS42A		512 0 🗐
	A514.0. A214 ()	GZ42A		513.0
	214	G4A	320	514.0
_	218	G8A		518.0
	220	G10A	324	520 0
	Almag 35	GM70B		535.0
	A218			A535.0
	B218			B535.0
	603, Ternalloy 5	ZG32A	311	705.0
	607, Ternalloy 7	ZG42A	312	707,0
	A712.0, A612 (8)	ZG61B	313	710.0
	D712.0, D612, 77	ZG61A	310	712,0
	40E (5), 70)			

Table 2: Former & Current Designations, Cast Aluminum Alloys

Former Designations				
commercial	ASTM-ASME	SAE (1)	A Desig	
613, Tenzaloy Precedent 71A 750 A850.0, <u>A750</u> (*) B850, <u>B750</u> (*) Red X.11, (*)	ZC81A, B ZG71B	315		
Red X-13 (*) A142 (*) XA140 (**) 85X (*) 85X (*) 113 (*) 138 (*) 152 (*) C612 (*) (*3)	SC122A CS104A ZC60A			
Footnotes to Ta (1) SAE: Societ These desig and J453. I (2) Aluminum A	able 2: ty of Automotive inations were us n 1990, SAE ad ssociation. The	Engineers ed in SAE opted the A	J452 A syste	

- (3) Underlined designations are listed in federal specification QQ-A-596 (permanent mold castin
- (4) Mean composition for Allcast is 3% Cu, 5% Si. Referenced in ASTM B26, B108. Often consid equivalent to 319.
- (5) Underlined designations are listed in federal specification QQ-A-601 (sand castings).
- (6) Alloy 512.0 is no longer active. (7) Underlined designation listed in
- (7) Underlined designation listed in ASTM B26.
 (8) Listed in ASTM B108.
- (9) Listed in ASTM B10 (9) Listed in AMS 4220.
- (10) Listed in SAE specification AMS 4227.
- (11) Listed in SAE specification AMS 4291.
- (12) Listed in QQ-A-591 and ASTM B85.
- (13) Alloy designation was changed from C612 to C712 and then apparently discontinued.
- (14) Alloy nominal composition: 9% Si, 3.5% Cu, 0.8% Mg, 0.8% Ni.

Incorrect Specification Conversion QQ-A-596 to ASTM B686

- Obsolete spec QQ-A-596 specifies the same alloy and temper as ASTM B686, but is NOT specific for soundness/NDT
- ASTM B686 allows soundness/NDT choice between 4 classes and 4 grades, as well as mechanical properties class specification
- Incorrect conversion causes unnecessary overspecification which drives costs up

Impact of Incorrect Conversion QQ-A-596 to ASTM B686

- Too severe of a soundness requirement may cause part producibility to be impractical or uneconomical
- For example, specifying Class 1, Grade A requires a part to have <u>NO</u> discernable radiographic discontinuities, and that every casting must be x-rayed 100% (all over)

Refer to ASTM B686 paragraph 4.1.2 Note 1 and ASTM B686 paragraph 15.1.4.1 "Class 1 Castings – Each shall be completely examined."

Correct Specification Conversion QQ-A-596 to ASTM B108/108M

- Same alloy, temper, tests, and properties
- Incorrect change to ASTM B686 caused alloy change from 356-T6 to A356-T6, no x-ray to Class 2 / Grade B, and higher mechanical property requirements
- If increased requirements are necessary, they should be explained
- Requiring tighter chemistry, x-ray, and test bar properties increased costs and delayed contract delivery by one year

Casting Note Tips

- QQ specs often convert closely to ASTM
- ASTM typically have multiple alloys and testing requirements
- MIL specs often convert directly to SAE / AMS
- SAE / AMS have single alloy and temper designations
- Critical application parts often use SAE / AMS
- MIL-C-6021H converts closely to SAE / AMS 2175
- MIL-C-6021G has different class and grade designations and requires special attention when updating

MIL-C-6021G to AMS 2175 Class Changes are Confusing

M	<u>11L-C-6021G</u>	converts to	<u>A</u>	<u>MS 2175</u>
•	Class 1A		•	Class 1
•	Class 1B		•	Class 2
•	Class 2A		•	Class 3
•	Class 2B		•	Class 4

Considerations for Conversion of MIL-A-21180 to AMS-A-21180

- Very similar (almost identical) specs
- Used for high-strength and critical applications
- Mostly used for aircraft parts
- Provides critical and non-critical requirements
- AMS-A-21180 references modern versions of NDT, for example, it uses AMS 2175 in place of obsolete MIL-C-6021

Correct conversions of NDT class and grade are essential!

Modern AMS Specs for AMS-A-21180 Conversion					
<u>AMS-A-21180</u>	<u>AMS</u>				
A201-T7	4229 & 4242				
354	N/A				
C355-T6	4215				
A356-T6	4218				
A357-T6	4218, 4289, 4241, 4249				
E357*	4288				

* Not in original MIL-A-21180

Recommendations

TDPs should:

- Call out alloy designations and temper (strength) designations accurately and completely including alloy, class, and grade
- Cross-reference old (former) alloy designations to current designations (e.g. 220 is now 520) so that there is no question which alloy is required
- Provide current specifications that are still active (not cancelled)
- Not over-specify requirements when specs are converted

